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Figure 3 |Measured strain and FEA simulation of the effect of surface
stress. a, Image of the measured crystal with a single contour of the
difference density 1⇢(r) superimposed, coloured according to its phase.
b, Calculated vertical component of the displacements of a model facetted
gold nanocrystal with a tensile surface stress �S = 1.5 N m�1 applied to the
facets alone. c, The same as in b with a tensile surface stress
�S = 0.75 N m�1 applied to the facets and a compressive surface stress
�S = �0.75 N m�1 applied to the spherical surface regions. d, The same as
in b with a compressive surface stress �S = �1.5 N m�1 applied to the
spherical surface regions alone. A sphere of radius 145 nm is attached to a
skin layer of 5 nm thickness used to apply the stress. Four 40� facets
intercept the sphere, also with 5 nm skins. e, Schematic of the relative
motions at the nanocrystal surface induced by thiol adsorption: the crystal’s
flat facets are observed to contract inwards relative to its spherical regions.

spherical, regions of the crystal surface than its flat facets, leading
to the clear pattern of strain we observe. The magnitudes of
surface stress involved, up to �16Nm�1 seen for cantilevers24
and the 9.5Nm�1 differential stress reported here, are large for
clean metals, which typically have tensile surface stresses in the
range26 of 4Nm�1. Chemisorption of electronegative elements on
metals typically leads to compressive stress changes in the range27
of �5Nm�1. Much of the discussion of SAMs in the literature23–25
considers only the flat configuration appropriate to surface-science
studies on extended crystals10 but, as pointed out25, even for long-
chain thiols, the large stress cannot arise from the van der Waals
chain–chain interactions or other weak forces alone, but requires at
least ionic or covalent rearrangements. Indeed the Au–S interaction
plays a crucial role in SAM formation: the structure of very small
(1.6 nm) thiolated nanocrystals has its Au–Au spacings strongly
disrupted and sulphur intermixed with gold in the outer layers2.
Our findings support this model and show strong thiol-induced
deformations of our 300 nm crystals with strains penetrating more
than 20 nm from the outer surface towards the crystal core, where
strains are absent. The tight-radius spherical parts of our 300 nm
nanocrystals might also undergo strong Au–S intermixing that
would indeed be able to provide sufficient stress. Intermixing
reactions involving atomic diffusion of Au at room temperature
would also be an attractive explanation of the relatively slow kinetics
seen in both our X-ray and the cantilever experiments.

Our observation of relative contraction of the facets and
expansion of the curved surface regions of Au nanocrystals,
illustrated in Fig. 3e, leads to the conclusion that the curved and

flat regions react very differently to SAM-forming thiol ligands.
This explains the strong effect of grain size on cantilever bending
stresses in polycrystalline films24. To the extent that surface stress
and surface energy are coupled26, we would expect the presence
of thiol ligands to affect the facet/sphere proportion in the ECS
(ref. 17). Variation of growth morphology, also directly influenced
by stress11,28, may explain how surface-active thiolated ‘additives’
can lead to ‘curvature-enhanced acceleration’ in the damascene
electroplating process29.

Methods
Gold nanocrystals. Silicon wafers were first cleaned in Piranha solution and then
coated with an evaporated layer of 20 nm gold on top of an evaporated 1 nm
Ti adhesion layer. The thin-film samples were then heated to 1,050 �C for 12 h
in a laboratory furnace purged with flowing nitrogen gas. Subsequent scanning
electron microscopy (SEM) showed the formation of arrays of nanocrystals with
a small range of sizes centred around 200 nm in diameter, separated by 1–2 µm.
SEM showed that they had not quite reached the expected ECS, spherical with
{111} facets; owing to incomplete dewetting, the crystals were wider than they
were tall with the specular (111) facet more extended than the six off-specular
side facets. The aspect ratio was about 1.5:1. Importantly for this experiment,
both rough, spherical and flat, facetted surface regions were simultaneously
present in the shape.

CXD experiments. Coherent X-rays of 8.92 keV from the 34-ID-C beamline
of the Advanced Photon Source (APS) were focused onto the sample using
Kirkpatrick–Baez (KB) mirrors that achieved a focus around 2⇥2 µm2. The
diffraction pattern was measured using a direct-detection CCD (charge-coupled
device) with 22.5 µm2 pixels located on the detector arm, 1.03m away from the
sample. The 3D CXD pattern was then acquired as a ✓-scan, rotating in 81 steps
of 0.01� about a vertical axis. The CXD patterns were inverted to images with a
3D Fourier transform and coordinate transformation, following support-based
phasing using a version of Fienup’s hybrid input–output algorithm14,15,30.

Thiol dosing. A syringe with its needle piercing the nitrogen-gas environment
above the sample was remotely actuated to avoid any disturbance of the KB–sample
alignment at the submicrometre level. The syringe was previously filled with a 5mM
solution of propane thiol, C3H7SH, dissolved in pure ethanol.

FEA. The COMSOL FEA package was used to simulate the strain pattern
introduced in a facetted gold sphere of 300 nm diameter by a differential surface
stress. Four circular flat facets, each subtending 40�, were placed in contact with a
thin skin of the same material of thickness h= 5 nm containing one value of the
bulk isotropic stress of �x = �y = �z = �B (in units of pascal) over the facets and
another value over the spherical surface regions. The surface stress, equal to the
‘mechanical surface tension’, is then given by �S =�Bh in units of newton per metre
or joules per square metre.
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Nanorod melting in small angle x-ray scattering 
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Nanorod melting in small angle x-ray scattering 

Li, Yuelin, Haidan Wen, Subramanian K R S Sankaranarayanan, et al.. 2015. Scientific Reports 5.  
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Imaging Lattice Dynamics 
Laser Pump – CXD Probe@LCLS 

spacing changes across the nanocrystal. Shown in Fig. 2c and d is the angular shift of the gold

(111) Bragg peak for two nanocrystals, A and B. For each time delay, the center of mass from

the sum of 100 diffracted LCLS pulses was used to obtain the angular shift, with the error for

each delay point given by the standard deviation. At the center of the rocking curve, ∼ 104

diffracted photons are recorded per pulse. The homogenous lattice expansion and contraction

is evident as harmonic motion of the Bragg peak angular shift. Immediately after the arrival of

the optical pump laser (positive delay times) the diffraction pattern starts shifting to lower an-

gles. Because the crystal is much bigger than the electromagnetic “skin depth”, this behaviour

is only consistent with an electron-mediated model, such as the “Two-temperature” model (25)

of heating in which electrons are excited first and subsequently transfer energy to the lattice

through electron-phonon coupling. Also plotted (solid red line), is the fitted peak shift, S(τ), as

a function of delay time, τ , and is given by

S (τ) =
N
∑

n=1

An exp

[

−
τ

τd,n

]

cos

[

2π

Tn

(τ + τ0,n)

]

+ Cn. (1)

n is the mode number, N(=2) is the total number of fitted modes, A is the amplitude, τd is the

decay time, Tn is the period of the oscillation and τ0 is the time offset. Two oscillation modes

are sufficient to fit the data shown in Fig. 2c and d within their errors with the fitted parameters

summarised in table S1. The fitted values of the two periods from the data for nanocrystal A

were 101 ps and 241 ps and for nanocrystal B were 90 ps and 256 ps. These two oscillation

modes are well reproduced by a Molecular Dynamics (MD) simulation (22) shown in Fig. S1.

Using the thermal expansion coefficient for bulk gold of 14.4(2)×10−6K−1 and the maximum

change in the lattice constant, the temperature increase on each pump-probe cycle was esti-

mated to be 44 K for each of the two nanocrystals. The fitted vibration amplitudes correspond

to a maximum displacement of 600pm at the surface of the crystal.

5

Crystal A 
101 ps and 241 ps  
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Ultrafast three dimensional imaging of lattice dynamics in individual gold nanocrystals  
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Imaging Lattice Dynamics 
Laser Pump – CXD Probe@LCLS 

Supplementary Figure 2: Comparison of projected displacements from experiment and

molecular dynamics simulations. Orthogonal slices from the image corresponding to a delay

time of +110 ps (top) which is compared to orthogonal cut slices from a cylinder simulated with

molecular dynamics (bottom). A time of +14 ps was selected for the comparison as it is a compa-

rable delay time to the data taking into account the relative dimensions.
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Experimental schematic 

C6H8O6+ 0.5 O2 è H2O + C6H6O6 
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Ascorbic Acid decomposition on gold 
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