
Tom Peterka	


tpeterka@mcs.anl.gov	


Mathematics and Computer Science Division	
Integrated Imaging Talk 9/30/14	


Imaging Meets HPC Through Scalable Data Analysis	


“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 

Reconstructed image 
of gold nanostructure 
with 30nm features	

[courtesy Junjing  Deng 
(NU) and Youssef 
Nashed (ANL)]	




Example of a data flow network 

Definition of Data 
Analysis	


•  Any data transformation, or a 
network or transformations.	

•  Anything done to original data 
beyond its original generation.	

•  Can be visual, analytical, statistical, 
or data management.	
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Examples	
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Streamlines and pathlines	

[Peterka et al. IPDPS’11]	


Stream surfaces	

[Lu et al. SC14]	


FTLE	

[Nouanesengsy et al. SC12]	


Information entropy	

[Chaudhuri et al. LDAV’12]	


Morse-Smale complex	

[Gyulassy et al. IPDPS’12]	


Voronoi and Delaunay tessellation	

[Peterka et al. SC14]	


Ptychography	

[Nashed et al.  in submission]	




Common Denominators	
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•  Big science => big data, big machines	

•  Most analysis algorithms are not up to speed	


•  Either serial, or 	


•  Overheads kill scalability	


•  Solutions	


•  Process data closer to the source	

•  Write scalable analysis algorithms	


•  Parallelize in various forms	


•  Build software stacks of useful and reusable layers	


•  Usability and workflow	


•  Develop libraries rather than tools	

•  Users write small main programs  and call into libraries	




Abstractions Matter	
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or	
Parallelizing by hand	
 With a data movement layer	


void ParallelAlgorithm() {	

   …	

   MPI_Send();	

   …	

   MPI_Recv();	

   …	

   MPI_Barrier();	

   …	

   MPI_File_write();	

}	


void ParallelAlgorithm() {	

   …	

   LocalAlgorithm();	

   …	

   DIY_Merge_blocks();	

   …	

   DIY_File_write()	

}	




Features of a Data Movement Layer	
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1. Separate analysis ops from data ops	


2. Group data items into blocks	


3. Assign blocks to processes	


4. Group blocks into neighborhoods	


5. Support multiple multiple instances of 2, 3, and 4	


6. Handle time	


7. Communicate between blocks in various ways	


8. Read data and write results	


9. Integrate with other libraries and tools	
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Data Movement Patterns	


7	


Many different analysis operations share a small set of communication 
patterns. These communication kernels together with supporting utilities for 
decomposition and I/O can be encapsulated, optimized, and reused.	


Analysis Communication 

Sort-Last Rendering Swap-Based Reduction 

Morse-Smale Complex Merge-Based Reduction 

Information Entropy Merge-Based Reduction 

Particle Tracing Neighborhood Exchange 

Voronoi Tessellation Neighborhood Exchange 

Graph layout Send-Receive 

Semi	

Regular	


Regular	
 Heterogeneous	

Data	


Homogeneous	

Data	


Irregular	




3 Communication Patterns	
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Nearest neighbor	
 Swap-based 
reduction	


Merge-based 
reduction	




Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	


How to enqueue items 
for neighbor exchange	


•  DIY offers several 
options	


•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	


•  Support for periodic 
boundary conditions 
involves tagging which 
neighbors are periodic 
and calling user-defined 
transform on objects 
being sent to them	
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Library	


Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	
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DIY���
helps the user write data-parallel analysis algorithms by decomposing a 

problem into blocks and communicating items between blocks. ���



Writing a DIY Program	
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Tutorial Examples	

•  Block I/O: Reading data, writing analysis 

results	

•  Static: Merge-based, Swap-based reduction, 

Neighborhood exchange	


•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis 

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with 

VTK filters	

•  R: Integrating DIY communication with R 

stats algorithms	

•  Multimodel: multiple domains and 

communicating between them	


Documentation	

•  README for installation	

•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	




Parallel Tessellation���

We developed a prototype library for computing in situ Voronoi and Delaunay 
tessellations from particle data and applied it to cosmology, molecular dynamics, 

and plasma fusion. ���

Key Ideas	


•  Mesh tessellations convert sparse point 
data into continuous dense field data.	


•  Meshing output of simulations is data-
intensive and requires supercomputing 
resources	


•  No large-scale data-parallel tessellation 
tools exist.	


•  We developed such a library, tess.	


•  We achieved good parallel 
performance and scalability.	


•  Widespread GIS applicability in addition 
to the datasets we tested.	
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Scalability	
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Strong and weak scaling for up to 
20483 synthetic particles and up to 
128K processes (excluding I/O) 
shows up to 90% strong scaling 
and up to 98% weak scaling.	




Applications in Molecular Dynamics	
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In simulations of microphase separated soft 
matter systems, populations of molecules self-
organize to form two or more domains.  Each 
domain contains only one type of bead.  These 
domains can form complicated geometries such as 
the double gyroid.	


We tessellated over 300 time steps of a system 
of 2,765 chains of an A-B-A triblock copolymer 
(176,960 total beads) found in an alternating 
gyroid morphology.  Summing the Voronoi cells 
of the A and B species suggests that because 
the B part has to stretch or fold, the B domain 
dilates relative to the A domain.	


The figure above shows the Voronoi tessellation of 1,000 A-B-C ``telechelics’’ composed of two 
nanospheres (A and C) connected by a polymer tether beads (B) for a total of 8,000 beads in a double 
gyroid morphology.  Only the Voronoi cells associated with the A species are shown. Such surfaces are 
usually constructed by using isosurface methods, which require averaging over many time steps; whereas 
by using the tessellation, such surfaces can be constructed for every time step.	


[Courtesy of Carolyn Phillips, ANL]	




Ptychographic Image Reconstruction	
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An illustration of multi-GPU phase retrieval. 
The diffraction patterns are subdivided and 
distributed among available GPUs. Pairwise 
stitching is performed on the partial 
reconstructions attained by phase retrieval. 
The initial diffraction patterns are subdivided 
into DIY blocks merged together using DIY’s 
merge-based reduction communication 
pattern. Strong scaling efficiency on synthetic 
data is approximately 55% on 21,000 256x256 
images.	


[Courtesy of Youssef Nashed, ANL]	




Parallel Reconstruction 
Performance	
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A gold Siemens star test pattern, with 
30 nm smallest feature size, was raster 
scanned through a 26×26 grid using a 
step size of 40nm and an exposure 
time of 0.6s per scan point, using a 5.2 
keV X-ray beam. The total scanning 
time was about 20 minutes.	


[Courtesy of Youssef Nashed, ANL]	




Looking Ahead	


17	


A collaboration between ANL and LBL (Tom Peterka and Dmitriy Morozov) 
resulted both in new applications of DIY and a new prototype implementation 
of DIY2 featuring multithreaded in/out of core block management. Includes 
shared repositories (diy, diy2, tess, tess2) and publications [SC14].	


Ongoing discussions between other ANL and LBL staff. (ANL: Peterka, 
Nashed, Jacobsen, Vine, McNulty; LBL: Ushizima, Krishnan, Shapiro, Marchesini, 
Maia, Sethian) regarding ptychographic reconstruction approaches.	


LBL (Dmitriy Morozov and Patrick O’Neil) developed tools for segmentation 
and connectivity analysis of granular and porous media using diy2.	


Left: 3D image of a granular material 
(flexible sandstone) acquired at ALS by 
Michael Manga and Dula Parkinson. (Data: 
2560 × 2560 × 1276). Right: Watershed 
segmentation of the material identifies 
individual grains (run on Edison @ 
NERSC) [courtesy Morozov, O’Neil 
(LBL)].	


[Courtesy of Dmitriy Morozov, LBL]	




Further Reading	
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“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962 


