
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	
Integrated Imaging Talk 9/30/14	

Imaging Meets HPC Through Scalable Data Analysis	

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”	

	
–Carl Friedrich Gauss, 1777-1855

Reconstructed image
of gold nanostructure
with 30nm features	

[courtesy Junjing Deng
(NU) and Youssef
Nashed (ANL)]	

Example of a data flow network

Definition of Data
Analysis	

•  Any data transformation, or a
network or transformations.	

•  Anything done to original data
beyond its original generation.	

•  Can be visual, analytical, statistical,
or data management.	

2	

Examples	

3	

Streamlines and pathlines	

[Peterka et al. IPDPS’11]	

Stream surfaces	

[Lu et al. SC14]	

FTLE	

[Nouanesengsy et al. SC12]	

Information entropy	

[Chaudhuri et al. LDAV’12]	

Morse-Smale complex	

[Gyulassy et al. IPDPS’12]	

Voronoi and Delaunay tessellation	

[Peterka et al. SC14]	

Ptychography	

[Nashed et al. in submission]	

Common Denominators	

4	

•  Big science => big data, big machines	

•  Most analysis algorithms are not up to speed	

•  Either serial, or 	

•  Overheads kill scalability	

•  Solutions	

•  Process data closer to the source	

•  Write scalable analysis algorithms	

•  Parallelize in various forms	

•  Build software stacks of useful and reusable layers	

•  Usability and workflow	

•  Develop libraries rather than tools	

•  Users write small main programs and call into libraries	

Abstractions Matter	

5	

or	
Parallelizing by hand	
 With a data movement layer	

void ParallelAlgorithm() {	

 …	

 MPI_Send();	

 …	

 MPI_Recv();	

 …	

 MPI_Barrier();	

 …	

 MPI_File_write();	

}	

void ParallelAlgorithm() {	

 …	

 LocalAlgorithm();	

 …	

 DIY_Merge_blocks();	

 …	

 DIY_File_write()	

}	

Features of a Data Movement Layer	

6	

1. Separate analysis ops from data ops	

2. Group data items into blocks	

3. Assign blocks to processes	

4. Group blocks into neighborhoods	

5. Support multiple multiple instances of 2, 3, and 4	

6. Handle time	

7. Communicate between blocks in various ways	

8. Read data and write results	

9. Integrate with other libraries and tools	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

Data Movement Patterns	

7	

Many different analysis operations share a small set of communication
patterns. These communication kernels together with supporting utilities for
decomposition and I/O can be encapsulated, optimized, and reused.	

Analysis Communication

Sort-Last Rendering Swap-Based Reduction

Morse-Smale Complex Merge-Based Reduction

Information Entropy Merge-Based Reduction

Particle Tracing Neighborhood Exchange

Voronoi Tessellation Neighborhood Exchange

Graph layout Send-Receive

Semi	

Regular	

Regular	
 Heterogeneous	

Data	

Homogeneous	

Data	

Irregular	

3 Communication Patterns	

8	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	
 Swap-based
reduction	

Merge-based
reduction	

Different Neighborhood Communication Patterns	

9	

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	

How to enqueue items
for neighbor exchange	

•  DIY offers several
options	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them	

10	

Library	

Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

DIY���
helps the user write data-parallel analysis algorithms by decomposing a

problem into blocks and communicating items between blocks. ���

Writing a DIY Program	

11	

Tutorial Examples	

•  Block I/O: Reading data, writing analysis

results	

•  Static: Merge-based, Swap-based reduction,

Neighborhood exchange	

•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with

VTK filters	

•  R: Integrating DIY communication with R

stats algorithms	

•  Multimodel: multiple domains and

communicating between them	

Documentation	

•  README for installation	

•  User’s manual with description, examples

of custom datatypes, complete API
reference	

Parallel Tessellation���

We developed a prototype library for computing in situ Voronoi and Delaunay
tessellations from particle data and applied it to cosmology, molecular dynamics,

and plasma fusion. ���

Key Ideas	

•  Mesh tessellations convert sparse point
data into continuous dense field data.	

•  Meshing output of simulations is data-
intensive and requires supercomputing
resources	

•  No large-scale data-parallel tessellation
tools exist.	

•  We developed such a library, tess.	

•  We achieved good parallel
performance and scalability.	

•  Widespread GIS applicability in addition
to the datasets we tested.	

12	

Scalability	

13	

Strong and weak scaling for up to
20483 synthetic particles and up to
128K processes (excluding I/O)
shows up to 90% strong scaling
and up to 98% weak scaling.	

Applications in Molecular Dynamics	

14	

In simulations of microphase separated soft
matter systems, populations of molecules self-
organize to form two or more domains. Each
domain contains only one type of bead. These
domains can form complicated geometries such as
the double gyroid.	

We tessellated over 300 time steps of a system
of 2,765 chains of an A-B-A triblock copolymer
(176,960 total beads) found in an alternating
gyroid morphology. Summing the Voronoi cells
of the A and B species suggests that because
the B part has to stretch or fold, the B domain
dilates relative to the A domain.	

The figure above shows the Voronoi tessellation of 1,000 A-B-C ``telechelics’’ composed of two
nanospheres (A and C) connected by a polymer tether beads (B) for a total of 8,000 beads in a double
gyroid morphology. Only the Voronoi cells associated with the A species are shown. Such surfaces are
usually constructed by using isosurface methods, which require averaging over many time steps; whereas
by using the tessellation, such surfaces can be constructed for every time step.	

[Courtesy of Carolyn Phillips, ANL]	

Ptychographic Image Reconstruction	

15	

An illustration of multi-GPU phase retrieval.
The diffraction patterns are subdivided and
distributed among available GPUs. Pairwise
stitching is performed on the partial
reconstructions attained by phase retrieval.
The initial diffraction patterns are subdivided
into DIY blocks merged together using DIY’s
merge-based reduction communication
pattern. Strong scaling efficiency on synthetic
data is approximately 55% on 21,000 256x256
images.	

[Courtesy of Youssef Nashed, ANL]	

Parallel Reconstruction
Performance	

16	

A gold Siemens star test pattern, with
30 nm smallest feature size, was raster
scanned through a 26×26 grid using a
step size of 40nm and an exposure
time of 0.6s per scan point, using a 5.2
keV X-ray beam. The total scanning
time was about 20 minutes.	

[Courtesy of Youssef Nashed, ANL]	

Looking Ahead	

17	

A collaboration between ANL and LBL (Tom Peterka and Dmitriy Morozov)
resulted both in new applications of DIY and a new prototype implementation
of DIY2 featuring multithreaded in/out of core block management. Includes
shared repositories (diy, diy2, tess, tess2) and publications [SC14].	

Ongoing discussions between other ANL and LBL staff. (ANL: Peterka,
Nashed, Jacobsen, Vine, McNulty; LBL: Ushizima, Krishnan, Shapiro, Marchesini,
Maia, Sethian) regarding ptychographic reconstruction approaches.	

LBL (Dmitriy Morozov and Patrick O’Neil) developed tools for segmentation
and connectivity analysis of granular and porous media using diy2.	

Left: 3D image of a granular material
(flexible sandstone) acquired at ALS by
Michael Manga and Dula Parkinson. (Data:
2560 × 2560 × 1276). Right: Watershed
segmentation of the material identifies
individual grains (run on Edison @
NERSC) [courtesy Morozov, O’Neil
(LBL)].	

[Courtesy of Dmitriy Morozov, LBL]	

Further Reading	

18	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.: Scalable Parallel
Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and Visualization Symposium
(LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special Session on
Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	

DIY applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of Parallel Particle
Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11, Anchorage AK, May 2011. 	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale Complexes. Proceedings of
IPDPS'12, Shanghai, China, 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE Computation for
Time-Varying Flow Fields. Proceedings of SC12, Salt Lake, UT. 	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the Universe:
Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale Visualization Workshop, Salt
Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable Computation of
Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large Data Analysis and Visualization,
LDAV'12, Seattle, WA.	

•  Peterka, T., Morozov, D., Phillips, C.: High-Performance Computation of Distributed-Memory Parallel 3D Voronoi
and Delaunay Tessellation. Proceedings of SC14, New Orleans, LA, 2014.	

•  Lu, K., Shen, H.-W., Peterka, T.: Scalable Computation of Stream Surfaces on Large Scale Vector Fields. Proceedings
of SC14, New Orleans, LA, 2014.	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

National Energy Research Scientific Computing Center (NERSC)	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

DOE SciDAC SDAV Institute	

People	

Dmitriy Morozov (LBL)	

https://bitbucket.org/diatomic/diy	

Integrated Imaging Talk 9/30/14	

“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962

