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MAUI: Modeling, Analysis, and Ultrafast |magmg

Scientific Achievement
Integrated Imaging, Modeling, and Analysis of Ultrafast
Energy Transport in Nanomaterials

MD
Modeling

Data
Analysis

Ultrafast
Imaging

Equilibrium Spatiotemporal Single-shot

Nonequilibrium Feature-based Ptychographic

>R Significance and Impact
Above: Simulation and experiment are integrated UnderStanding lattice vibrations in individual
through a common language of data analysis. nanoparticles can enable energy applications such

as photocatalysis, photonics, thermoelectrics,
semiconductor design, groundwater photo
remediation, and heat transfer in battery interfaces.

; e g High Level Research Details
fr wd @ iR | — Modeling: MD will be used to model the phonon
L transport and lattice thermal conductivities for the

Above: An integrated a'ppro’éch to predict and proposed systems.

validate material response to external stimuli — Analysis: In order to combine the reverse (image

shows density and distortion vectors that lead to . . . .
identification of cracks along slip planes. reconstruction) vylth the forward (simulation) models,

data transformations between model spaces will be

investigated.

— Ultrafast imaging: We will conduct laser pump-probe

imaging experiments to study the structure dynamics
originating from electron-phonon interactions.

Temperature (10°K)

1 Left: (a) Million-atom MD simulation showing a laser-heated gold nanorod in water
(b) Typical schematic of an NEMD simulation to compute heat transport (c)
Temperature dissipation and aspect ratio in our preliminary MD calculations.




Molecular dynamics: accessible length and time

scales
A 0 . . .
s Atomistic Mesoscale Continuum
w
)
> min| €
" Finite element
methods
S
Phase field Thermochemistry
ms models and mean field
Accelerated Coarse theories
MD grained MD/' pjsjocation
= MC )
dynamics
Non-reactive MD/
MC
ns
Reactive MD
ps
QM/DFT
Length Scale
o gt )
A nm um mm m
S

+ With dedicated HPC
systems classical
molecular dynamics (MD)
for micron length and time
scales possible.

>

s For several interfacial
phenomena, nanoscale
regime required for
significant deviations from
bulk behavior.

Classical and reactive MD
offer powerful tools to
investigate underlying
physics and reaction
Kinetics.

* No assumptions like
mesoscale or
continuum models.

s Faster than DFT.
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Molecular dynamics is an ideal technique to gain
atomistic insights into materials phenomena

—

Self assembly

—

Molecular

Corrosion

Dynamics
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Pressure induced

structural transitions |

Ceramics )

Reaction

, )
Mechanisms
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N
Force-field is the “heart” of molecular dynamics

_ _, Force-field
V=71@) Interatomic potential

Success of molecular dynamics hinges on the accuracy,
robustness, and transferability of force field

S Courtesy: Badri Narayanan, ANL 6



Force-field parameterization

« Simplistic forms: Lennard Jones Vv =4¢ 2 parameters

E= EEb,ij + EEov,i + EEun,i + EElp,i + E Ev,ijk + EEvdW,ij T EECU Upto 600
] f ,. i ik ij ij parameters

i) i<j<k

e Bulk solids/
liquids/
surfaces

 Nano-clusters

* Dimers/trimers

* Pairwise
Interactions
* Multi-body
iInteractions
 Bond-order

)

Selection of Training data

from DFT/
Experiments
s ) Courtesy: Badri Narayanan, ANL 7
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Integrated imaging and simulation to probe
nanocatalytic activity of gold
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N
Nanocatalytic activity on gold surfaces

¢ Purpose: Investigate origin of lattice strain in gold
nanoclusters facilitating ascorbic acid decomposition

» Methodology: Reactive MD simulations

*» Key result: Identification of a mechanistic sequence of
processes/reactions during ascorbic acid decomposition on
gold
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Simulation background

Ascorbic acid decomposition

Aunc
CsHgOgt 0.5 O ====> H20 + CsH¢Os
a) Shape, size, Q,, b) lsosurface of u,
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Acid At = 30m
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Reconstructed CDI images of gold +

°ascorbic acid system.

N
Experimental observation:

+ Reversible lattice distortions in
gold nanocrystals upon exposure
to 0.1M and 1M ascorbic acid
solutions.

s The lattice strain was seen to be
at a maximum near the edges of
the top and bottom {111} oriented
facets.

Reactive MD:
% Goal - Investigate the atomic

scale processes underlying gold-
catalyzed ascorbic acid
decomposition.

s The reactive MD simulations are
performed using the ReaxFF
force field.

Information collected:

+ Bond orders of every pair of
atoms.

s Atomic trajectory.

* Analysis yields temporal data
about molecular species and
reaction pathways in simulation.
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Equilibrated gold NP structures
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Sample schematic of simulated system

1M acid + water + gold (truncated octahedron)

Red - Oxygen

Yellow - Gold

Blue - Hydrogen

Green - Carbon
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OH ion chemisorbs on gold, acid physisorbs

561-atom
icosahedronina 2
M acid solution

N —

I

490-atom truncated
octahedroninal M

acid solution -
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Effect of acid molarity

Displacement of Au atoms after 200 ps

Gold

Oxygen
Hydrogen
o
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Effect of acid molarity

“*Maximum strain on Au at corner and edge sites.

“* Displacement magnitude is independent of molarity
(between 0.64 and 0.80 A).
**Observed values are comparable with experiments.

¢+ Strain depends on chemical adsorption and strength of O-
Au bond (no Au-C bonds are seen).

¢ For comparison there are no adsorbed OH's in the
absence of ascorbic acid.

**Presence of acid affects dissociation of water near the
gold surface.
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Adsorption pathway




Adsorption pathway movie




Summary

“* Purpose: Investigate origin of lattice strain in gold
nanoclusters facilitating ascorbic acid
decomposition

+* Methodology: Reactive MD simulations

“* Key results:
*» ldentification of a mechanistic sequence of
processes/reactions during ascorbic acid
decomposition on gold.

¢ Strain values and location are comparable with
experiments.
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Ultrafast vapor nanobubble cavitation
around intensely heated nanoparticles
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\
V(r)==0.5kR; In[ 1= (r/Ry)?]

Model system

s Finitely extensible spring (FENE) to - -
model nanoparticle (NP) - solid b 0 0
particle (NP) - solid may be VL](T)=4€[(—) _(_)]

heated to any temperature without r r
melting. _

% Lennard-Jones (LJ) potential modeling € ~ 0.5758 keal/mol
the fluid. O =03nm

o= -



Nanoparticle cooling curves
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Nanoscale vapor cavitation demonstrated via MD
for the first time

Initial Typ = 1500 K
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Formation of vapor upon cooling of NP - density
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N
Collapse of vapor upon cooling of NP - density

profiles
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Hydrostatic pressure in spherical shells of the

liquid -
Initial Ty = 1500 K Shell thickness = 5 A°
600 - . . -
" Negative pressure (tension) —r=50.00 A
as bubble starts to collapse) S A
400 and high pressure just beﬁ‘ore r=255.00 e
| ' bubble starts to form. —r=60.00 A
3
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b

Speed of bubble collapse = ~ 37 m/s
Consistent with bubble velocity calculations from bubble size evolution
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\
Hydrostatic pressure in spherical shells of the

liquid
Initial Typ = 1500 K Shell thickness = 5 A°

600 . -
Negative pressure (tension) as —r=250.00A
bubble starts to collapse) and high —r =55.00 A
pressure just before bubble starts o
to form.The tension here is not —r=60.00A
400 the surface tension but bubble b |
0 dynamics during collapse and

formation of vapor induces a
pressure wave in the system.
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\
Cavitation dynamics - 4 regimes

165

| - adiabatic/rapid
expansion

160
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lll - isothermal collapse

i Tne=2000 K

2 IV - rapid heating due to
3 liquid reestablishing the
: contact with hot
i | nanoparticle.
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Summary

“+ Bubble dynamics during collapse and formation of

o0

vapor induces a pressure wave Iin the system.

The evolution of the bubble can be represented in 4
stages:

(I) adiabatic expansion;

(1) isothermal expansion;

(I11) isothermal collapse and

(IV) rapid heating due to interaction with hot
nanoparticle.
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Final note

*» MD simulations can complement imaging
experiments in a wide variety of scenarios.

4

* Investigate reactions on nanoscale surfaces.
» Investigate lattice dynamics.
» Investigate phase change.

* @

L)

*
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